Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2171, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462641

RESUMO

A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.


Assuntos
Anestésicos , Propofol , Animais , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Propofol/farmacologia , Córtex Cerebral , Primatas , Tálamo/diagnóstico por imagem , Anestésicos/farmacologia
2.
Trends Neurosci ; 45(11): 838-853, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057473

RESUMO

Recent allostatic-interoceptive explanations using predictive coding models propose that efficient regulation of the body's internal milieu is necessary to correctly anticipate environmental needs. We review this framework applied to understanding behavioral variant frontotemporal dementia (bvFTD) considering both allostatic overload and interoceptive deficits. First, we show how this framework could explain divergent deficits in bvFTD (cognitive impairments, behavioral maladjustment, brain atrophy, fronto-insular-temporal network atypicality, aberrant interoceptive electrophysiological activity, and autonomic disbalance). We develop a set of theory-driven predictions based on levels of allostatic interoception associated with bvFTD phenomenology and related physiopathological mechanisms. This approach may help further understand the disparate behavioral and physiopathological dysregulations of bvFTD, suggesting targeted interventions and strengthening clinical models of neurological and psychiatric disorders.


Assuntos
Disfunção Cognitiva , Demência Frontotemporal , Interocepção , Humanos , Imageamento por Ressonância Magnética , Atrofia , Disfunção Cognitiva/complicações
3.
Cereb Cortex ; 32(2): 298-311, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231843

RESUMO

The study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we estimated maximum entropy models to derive collective, macroscopic properties that quantify the system's capabilities to produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.


Assuntos
Anestesia , Vigília , Encéfalo/diagnóstico por imagem , Estado de Consciência , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...